borne children. It may be simply an inflammatory condition of the connective and fibrous tissue in a chronic subinvoluting uterus, or it may be a general hyperplasia of the uterus, caused by the irritation of a lacerated perineum or cervix; or it may be caused from the irritation of repeated menstrual congestions which is made abnormal by a flexion or displacement of the uterus; or an error of nutrition from a general nervous derangement may be the exciting cause. Whatever the causes are, we find a large tender uterus, a thickened catarrhal condition of the endometrium, oftentimes an inflamed condition of the cervical glands, with the thick albuminous discharge welling out, and very often a well-marked abnormal displacement from the sheer weight of the organ. The condition is one of hypertrophy of the normal constituents of the organ from congestion and inflammation.

This condition will yield to electrolysis, although I cannot select any one well marked case as an example. I have several times seen this condition yield to the chemical effect of the galvanic current when using it in other connections. In a condition often accompanying this I have seen very pronounced results, and it is worthy of mention because of the unsatisfactory results by the ordinary methods of treatment of the difficulty. I refer to inflammation of the cervical glands. This disease, with its characteristic tenacious albuminous discharge, every physician has had more or less to do with. The ordinary forms of treatment where cure is accomplished are harsh, and unsatisfactory in the extreme. Destruction of the deep gland tissue by curetting, cauterezizing, or cutting, are the only methods that have heretofore given satisfactory results. These glands can be destroyed, or their condition of chronic inflammation reduced by the effect of repeated applications of a metal bulb of the negative pole of a galvanic battery. I first noticed this condition yield while treating other forms of pelvic trouble with electricity where it was desirable to pass a metal electrode into the cervical canal. One half dozen thorough applications of this description, using a bulb electrode similar to those used for stricture of the urethra, and gradually increasing the size of the bulb, will, I think, cure the most obstinate cervical catarrh. A current of from fourteen to twenty milliampères can be used without producing any pain. I pass the bulb of the electrode through the internal os at each application.

5. Strictures of the Uterine Canal I have removed by electrolysis in a large number of cases. It was in this condition, at the suggestion of Prof. Delaskie Miller, of Chicago, that I first used electrolysis. That gentleman had been using it with success for some time before my first attempt. It matters not what the condition is that produces the stricture, or in what portion of the canal it exists. It has all the advantages over gradual dilation, divulsion or cutting; that electrolysis has in the treatment of male urethral strictures over gradual dilation, divulsion or cutting. viz.: painlessness, permanency, and, in case of gradual dilatation, promptness. There is little danger of producing a peritonitis by electrolysis.

The method of operating on these strictures is very similar to that employed in strictures of the urethra. A small staff of soft metal, covered with hard rubber, upon the end of which one of a graduated set of olive-shaped metal bulbs may be screwed, is used for the uterine electrode. After making out the position of the uterus by manipulation, or by passing a small flexible metal probe, the staff of the electrode is made to conform with the supposed shape of the canal (figure 5). After this a flat sponge-electrode, attached to the positive plate of the battery, is applied to the thigh or abdomen of the patient, the internal electrode is passed into the cervix, either through a Sims speculum or a wide bivalve, and, while the cervix is steadied with a strong tenaculum with one hand, the electrode is guided by the other into the cervix until it finds its first obstruction, the current is gradually increased, while very gentle pressure is made on the electrode, until it passes in the course of the canal all the obstructions. Usually the smallest canal can be passed at the first sitting by a bulb the size of a No. 7 or 8 English catheter. This can be repeated with larger bulbs, if desirable, for three or four times, when it will be found that the canal is permanently enlarged.

(To be concluded.)

MEDICAL PROGRESS.

Therapeutics of Trichinosis.—The value of glycerin in the treatment of trichinosis has been repeatedly alluded to. Fiedler noticed several years ago, in the preparation of microscopic specimens, that trichine and their embryos died at once when brought in contact with glycerin (even if diluted with two to three times its quantity of water). This was evidently the result of the hygroscopic power of glycerin, causing the abstraction of water from the parasites. This fact led Fiedler to treat animals, fed purposely with trichinous meat, with glycerine; but he did not obtain any positive results. Later he exhibited glycerin in several cases of trichinosis in man, and was successful. Mercel also published a case of trichinosis cured by glycerin, so that the profession regards this drug justly indicated in this affection.

In the Deutsches Archiv für Klinische Medizin, vol. xxxvii, No. 12, Fiedler recommends the hourly administration of a tablespoonful of pure glycerin in trichinosis, though only in grave cases, as large doses of the drug may produce hemoglobinuria and other toxic symptoms.

In this instance the employment of Unna's kera- time pills, or keratine capsules, which dissolve only in the small intestines, would appear very appropriate. To complete the abstraction of water from the parasites, Fiedler advises to give large doses of alcohol and to prescribe a rigid diet. Glycerin may also be injected into the rectum. A powerful purge, though, is to precede all these therapeutic measures.

—Therapeutic Gazette, June 15, 1886.
Electrolysis of water. Production of sodium and chlorine. Production of magnesium. Electrolysis is a process by which electrical energy is used to produce a chemical change. Perhaps the most familiar example of electrolysis is the decomposition (breakdown) of water into hydrogen and oxygen by means of an electric current. The same process can be used to decompose compounds other than water. Sodium, chlorine, magnesium, and aluminum are four elements produced commercially by electrolysis. In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell.

The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean either "breakdown of... Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. YouTube Encyclopedic. 1/5. What Is Electrolysis | Reactions | Chemistry | FuseSchool. Introduction to electrolysis | Redox reactions and electrochemistry | Chemistry | Khan Academy. GCSE Science Revision Chemistry "Introducing Electrolysis". We generate hydrogen from renewable energy using PEM electrolysis, and in doing so make an important contribution to the global energy transition. The Silyzer product line helps you integrate fluctuating energy sources such as sun and wind in your process. We are setting the standards when it comes to sustainable hydrogen generation for the future. Electrolysis is the process by which the electric current passes through a substance to make a chemical change in it producing separation. Electrolysis is a process by which the elements of a compound can be separated using electricity. Some substances such as salts and some metallic oxides are good conductors of electricity and suffer decomposition when they experience the passage of an electric current, these substances are called electrolytes, and this phenomenon is known as electrolysis.