Universidad Nacional de la Plata. Revista del Museo de la Plata, Tomo xxiii (segunda Serie, Tomo x). La Plata, 1915. (From the University.)

University of Maine, Catalogue, 1915-1916. Waterville, 1915. (From the University.)

Vassar College, Fifty-first Annual Catalogue, 1915-1916. Poughkeepsie, N. Y., 1915. (From the College.)

Wellman-Seaver-Morgan Company, Catalogue No. 347 of Hydraulic Turbines. Cleveland, no date. (From the Company.)

Westinghouse Electric and Manufacturing Company, Special Publication No. 1562, Railway Equipments and Locomotives in the Far West. East Pittsburgh, 1915. (From the Company.)

PUBLICATIONS RECEIVED.

Canada Department of Mines, Mines Branch: Production of Coal and Coke in Canada during the calendar year 1914. 39 pages, 8vo. Production of Copper, Gold, Lead, Nickel, Silver, Zinc, and Other Metals in Canada during the calendar year 1914. 75 pages, 8vo. Production of Iron and Steel in

A Practicable Example of Air-cooling. Anon. *(The Autocar, vol. xxxv, No. 1053, December 25, 1915.)*—The one and only representative of the air-cooled engine in the motor world sold as an every-day product is the Franklin. The car is not known except by name in Europe, but it has been for many years a standard product in the United States, and a very high standard of performance has been achieved. Its last record has just been completed under the official observation of the Automobile Club of America, and on this occasion the consumption of lubricating oil was carefully tested and was found to work out at 1046 miles per gallon. While this is far from being a record in low consumption, it is more than sufficient to show that the engine is by no means extravagant in the consumption of lubricating oil. A complaint frequently brought against the air-cooled engine is that of enormous oil consumption, extremists maintaining that, although water is dispensed with, so much lubricating oil is used that the engine might be called an oil-cooled rather than a water-cooled motor. The Franklin car upon which the particular tests were made is five-seated with closed body.

Only the bare results are at present available, but the engine is by no means a diminutive one, having six cylinders 90×102 mm. The car is very light, special attention having been given to the reduction of weight. The cylinder flanges are vertical, and a hood with open ends is placed over the engine. Vanes in the fly-wheel pull a current of air through the hood which conveys the heat from the flanges backward out of the bonnet. As the sole representative of the air-cooled motor car it is a most interesting machine, and its latest performance certainly disposes of the reproach as to excessive oil consumption.
Colloids. LEARNING OBJECTIVES. By the end of this section, you will be able to: Describe the composition and properties of colloidal dispersions. List and explain several technological applications of colloids. As a child, you may have made suspensions such as mixtures of mud and water, flour and water, or a suspension of solid pigments in water, known as tempera paint. These suspensions are heterogeneous mixtures composed of relatively large particles that are visible (or that can be seen with a magnifying glass). Tutorial on colloids for college and advanced-HS General Chemistry. Colloids occupy an intermediate place between [particulate] suspensions and solutions, both in terms of their observable properties and particle size. In a sense, they bridge the microscopic and the macroscopic. As such, they possess some of the properties of both, which makes colloidal matter highly adaptable to specific uses and functions. Electrical properties of colloids. In general, differences in electric potential exist between all phase boundaries. If you have studied electrochemistry, you will know that two dissimilar metals in contact exhibit a "contact potential", and that similar potential differences exist between a metal and a solution in which it is immersed. Colloid Chemistry. Clemens K. Weiss. Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstrasse 109. Peptides also merit attention because their self-assembling properties mimic the proteins that are present in the extracellular matrix. The present review is mainly focused on explaining the recent advances on hydrogels derived from the indicated polymers or their combinations. Attention has also been paid to the development of hydrogels for innovative biomedical uses. Therefore, smart materials displaying stimuli responsiveness and having shape memory properties are considered. We synthesize these colloids and characterize their size distribution. The recognition of colloids, the theory of colloids, and their general physico-chemical properties. By. Dr. Wolfgang Ostwald. Mechanical properties of colloid systems. I. relations of volume and mass in colloids. 21. Volume and Density Relations in Colloids 115. 1. Volume Relations of Colloid Systems 115. 1 The youth of colloid-chemistry itself justifies such questions, and their discussion is by no means either useless or superfluous. An answer to the question: "How do we know when we. 1 We need but call to mind the modern problem of the relation to each other in solutions of various kinds of color, chemical constitution, molecular state and character of solvent as studied by A. Hantzsch and his pupils.