Recommended books include:

Apollo 13, by Jim Lovell & Jeffrey Kluger

Off the Planet: surviving five perilous months aboard the space station Mir, by Jerry M. Linenger

Bold Endeavors: Lessons from Polar and Space Exploration, by Jack Stuster

Endurance: Shackleton's Incredible Voyage, by Alfred Lansing

West With the Night, by Beryl Markham

Into Thin Air: A Personal Account of the Mount Everest Disaster, by Jon Krakauer

The Conquest of New Spain, by Bernal Diaz del Castillo

Sailing Alone Around the World, by Joshua Slocum

Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of his Time, by Dava Sobel

1491: New Revelations of the Americas Before Columbus, by Charles C. Mann

Collapse: How Societies Choose to Fail or Succeed, by Jared Diamond

The Perfect Storm: A True Story of Men Against the Sea, by Sebastian Junger

The Hungry Ocean: A Swordboat Captain's Journey, by Linda Greenlaw

Ship of Gold in the Deep Blue Sea, Gary Kinder
 - About searching for a ship wreck (lots of gold) and also some of the cool engineering ideas that were developed to bring up the treasure undisturbed...
Foundations of Engineering Design 2.00A/16.00A

Constraints:
- Maximum dimensions of 50 cm x 50 cm x 50 cm
- Topside control via 15m tether with 12V DC power
- Maximum of three motors
- Submersible to a minimum of 20 ft.
- Must have light bank, camera, and sensor package

The Initial Design

In order to maximize the chance of success, the decision was made to keep the design as simple as possible. We used a rectangular PVC frame with a 30 cm square base and 20 cm height. Extra beams were placed along the bottom and the top to serve as attachment holds for the motors and sensor package.

For information about citing these materials or our Terms of Use, visit:

With occasional guest appearances from Profs Newman, Kim, Leeb, Dubowski & others TBA. Handouts: 1. Syllabus 2. Questionnaire 3. pre-test mini-Homework (due Thursday). Aero/Astro (course 16) Ugrad Aero, PhD in Aerospace Biomedical Eng. Prof. Newman will present guest lectures and the Exploration classes in March! Lectures: Tuesday and Thursday, 2:30 - 4:00 pm. Lab: Wednesday 2 - 5 pm or Friday 11 am - 2pm. Office Hours: TBA. Lectures 2x week Lab weekly (2 sessions, must come to assigned session) Lecture notes posted ONLINE: All Course Materials can found at the course Website: Homework and CI assignments are listed in the syllabus.

Individual Communications Requirements. 2.00AJ/16.00AJ FUNdaMENTALS of Engineering Design: Explore Space, Sea, and Earth. Pre-test Technical Questions. Homework #1 Due THURSDAY February 5, 2009.Â 15) You are asked to design a new rover to explore an icy moon, with uneven terrain, in space. You are uncertain whether the entire planet will be solid ice, so you must plan to be able to operate in regions where the ice may have melted into water or slush. Sketch a quick design concept, label novel features of your vehicle, and describe briefly how your vehicle will transition from ice to water. Sketch a quick design concept, label novel features of your vehicle, and describe briefly how your vehicle will transition from ice to water. Catalog id : 2.00 AJ / 16.00 AJ. 16 Reviewers. Course Level Bachelors / UG. Type Online. Duration 0 Months.Â Student teams formulate and complete space/earth/ocean exploration-based design projects with weekly milestones. This course introduces core engineering themes, principles, and modes of thinking, and includes exercises in written and oral communication and team building. Specialized learning modules enable teams to focus on the knowledge required to complete their projects, such as machine elements, electronics, design process, visualization and communication.Â Introduction to engineering and the design process, engineering drawing, sketching, back of the envelope calculations. 2. Basic design analysis. Free body diagrams, Newton's laws.